Cấu tạo và nguyên lý hoạt động Điốt_phát_quang_hữu_cơ

Sơ đồ thiết kế của một điốt phát quang hữu cơ hai lớp: 1. Cathode (−), 2. Lớp phát xạ, 3. Phát xạ, 4. Lớp dẫn điện, 5. Anode (+)Điốt phát quang hữu cơ 1 lớp thuần, 2 lớp truyền thống, và 1 lớp không thuần phân bậc.

Một điốt phát quang hữu cơ loại thông thường bao hàm một tấm vật liệu hữu cơ đặt giữa hai điện cực âm (Cathode) và dương (anode), tất cả chúng được đặt trong một khối chất nền. Các phân tử hữu cơ của điốt có khả năng dẫn điện nhờ vào hiện tượng phản cục bộ hóa (delocalize) của các electron pi, gây ra bởi sự cộng hưởng (conjugation) của nhiều phần khác nhau của các obitan của cả phân tử hữu cơ. Khả năng dẫn điện của các vật liệu hữu cơ trong điốt không hoàn toàn giống nhau, có những vật liệu dẫn điện tốt nhưng cũng có vật liệu cách điện, vì vậy nhìn chung màng hữu cơ của điốt là loại bán dẫn hữu cơ. Obitan đầy điện tử có mức năng lượng cao nhất (HOMO) và obitan trống có mức năng lượng thấp nhất (LUMO) của các bán dẫn hữu cơ này tương ứng với dải hóa trịdải dẫn của các bán dẫn vô cơ.

Thiết kế cơ bản nhất của điốt phát quang hữu cơ chỉ bao gồm một lớp vật liệu hữu cơ, tỉ như thiết bị phát sinh quang điện đầu tiên do J. H. Burroughes và các đồng sự chế tạo, nó chỉ bao gồm một lớp poli(p-phenylen vinylen). Loại điốt phức tạp hơn bao hàm nhiều lớp hữu cơ khác loại nhau để gia tăng hiệu suất của thiết bị. Các loại vật liệu được lựa chọn nhằm tăng cường khả năng dẫn điện, hỗ trợ cho việc tiêm nhập điện tích tại các điện cực - bằng cách cung cấp một cấu hình điện tử ít đứt quãng hơn,[22] hoặc chặn điện tích có thể chạy từ điện cực này sang điện cực kia và trở nên hao phí.[23] Các loại điốt phát quang hiện đại có cấu trúc hai lớp hữu cơ, một lớp dẫn điện và một lớp phát xạ. Các mẫu cải tiến gần đây nâng cao hiệu suất quang tử lên đến 19% bằng việc sử dụng thiết kế tiếp hợp không đồng nhất phân bậc (graded heterojunction).[24] Trong thiết kế này, điốt phát quang chỉ có một lớp hữu cơ với hàm lượng lỗ trống và điện tử có giá trị khác nhau tùy theo bộ phận của lớp phát xạ, công dụng của thiết kế là kết hợp các ưu điểm của các thiết kế truyền thống bằng việc cải thiện mức độ tiêm nhập điện tích trong khi vẫn duy trì sự cân bằng của việc trao đổi điện tích trong vùng phát xạ.[25]

Khi điốt hoạt động, một điện thế được áp lên toàn bộ thiết bị này, khiến cho anốt có điện tích dương hơn so với catốt. Loại anốt dùng cho OLED được lựa chọn dựa trên các tiêu chí chất lượng về khả năng thấu quang, dẫn điện, và tính ổn định hóa học.[26] Lúc này, dòng điện tử chạy xuyên qua điốt từ catốt đến anốt; trong đó điện tử được "điền" vào các obitan trống có mức năng lượng thấp nhất (LUMO) nằm trong các phân tử của lớp hữu cơ, và bị "rút" ra khỏi các obitan đầy có mức năng lượng cao nhất (HOMO) nằm tại anốt. Cả quá trình này được gọi là sự tiêm nhập của lỗ trống vào trong HOMO. Lực tĩnh điện làm "di chuyển" vị trí các lỗ trống và các điện tử lại gần nhau và chúng kết hợp thành các exiton, một trạng thái liên kết giữa điện tử và lỗ trống. Hiện tượng kết hợp chủ yếu xảy ở lớp phát xạ vì trong vật liệu bán dẫn hữu cơ khi lỗ trống có khả năng linh động cao hơn điện tử. Khi trạng thái exiton của điện tử và lỗ trống bị phân rã, nặng lượng được phát xạ ra, đi kèm với việc phát ra một bức xạ với tần sốbước sóng nằm trong phổ nhìn thấy được, nói cách khác nó phát ra ánh sáng mắt nhìn thấy được. Tần số của bức xạ phụ thuộc vào khoảng cách giữa các dải (band gap) của vật liệu, trong trường hợp này là sự khác biệt của mức năng lượng giữa HOMO và LUMO.

Vì điện tử và lỗ trống là các fermion có độ bội spin là h/2, một exiton có thể ở trạng thái đơn (singlet) hay nhóm ba (triplet), tùy theo spin của điện tử và lỗ trống được kết hợp như thế nào. Theo phương diện thống kê, 3 exiton triplet sẽ được hình thành cho mỗi exiton singlet. Sự phân rã của trạng thái triplet (lân quang) không thể xảy ra theo khía cạnh spin, điều này làm gia tăng quãng thời gian chuyển tiếp và làm giới hạn hiệu suất nội của các thiết bị phát huỳnh quang. Tuy nhiên loại điốt phát quang hữu cơ lân quang có khả năng sử dụng tương tác spin-quỹ đạo để kích thích chuyển mức nội (intersystem crossing) giữa trạng thái singlet và triplet, nhờ đó có được phát xạ từ cả hai trạng thái này và giúp gia tăng hiệu suất nội nói chung.

Dung dịch Ôxít inđi-thiếc (ITO) thường được sử dụng để chế tạo anốt. Nó trong suốt đối với ánh sáng nhìn thấy được và có công phát xạ cao, điều này giúp gia tăng sự tiêm nhập của lỗ trống vào HOMO của lớp vật liệu hữu cơ. Một lớp vật liệu dẫn điện của điốt có thể bao hàm loại vật liệu PEDOT:PSS[27] vì mức độ năng lượng HOMO của vật liệu này nằm vào giữa công phát xạ của dung dịch ITO và HOMO của các loại polyme thông dụng khác, điều đó làm giảm trở ngại năng lượng đối với tiêm nhập lỗ trống. Các kim loại như bari hay canxi thường được dùng để làm catốt vì chúng có công phát xạ thấp, giúp tăng cường sự tiêm nhập của điện tử vào LUMO của lớp vật liệu hữu cơ.[28] Các kim loại này có khả năng phản ứng hóa học rất mạnh, vì vậy người ta thường bọc một lớp nhôm bên ngoài để chúng không bị ăn mòn hóa học.

Các nghiên cứu đã cho thấy các tính chất của anốt, đặc biệt là hình dạng bề mặt tiếp xúc giữa anốt với lớp trung chuyển lỗ trống (HTL) có vai trò quan trọng đối với hiệu suất, công suất và tuổi thọ của điốt phát quang hữu cơ. Sai lỗi trong các bề mặt nằy làm giảm sự kết dính, tăng điện trở và tăng mức độ hình thành các "điểm đen" không phát sáng trong khối vật liệu của điốt, vì thế làm giảm tuổi thọ diode. Người ta sử dụng một số phương pháp để làm giảm độ thô ráp của chất nền dung dịch ITO/kính, trong đó bao hàm việc dùng các tấm màng thuốc mỏng và các lớp vật liệu đơn có khả năng tự ghép lại với nhau. Các vật liệu mới dùng để chế tạo chất nền và anode với khả năng tăng hiệu suất và tuổi thọ cũng đang được áp dụng, ví dụ anode làm bằng tinh thể ngọc lam xử lý với các tấm vàng mỏng được cho là có công phát xạ, điện thế, điện trở thấp và giúp gia tăng tuổi thọ diode.[29]

Các thiết bị tải dạng "diode phát quang" đơn giản thường được sử dụng để nghiên cứu hóa động năng và cơ chế vận chuyển điện tích của mỗi loại vật liệu, và nó có thể hiệu quả khi sử dụng trong việc nghiên cứu quá trình chuyển hóa năng lượng. Khi dòng điện chạy qua "điốt" một loại vật mang điện tích (lỗ trống hoặc điện tử), hiện tượng tái tổ hợp không xảy ra và vì vậy không có phát sáng. Ví dụ, "điốt" chỉ bao gồm điện tử có thể được chế tạo bằng cách thay thế dung dịch ITO bằng một kim loại có công phát xạ thấp hơn, điều này làm tăng mức năng lượng trở ngại cho quá trình tiêm nhập lỗ trống. Tương tự, "điốt" thuần lỗ trống có thể được chế tạo khi sử dụng catốt thuần làm bằng nhôm vì mức năng lượng trở ngại quá lớn để cho tiêm nhập điện tử có thể xảy ra một cách hiệu quả.[30][31][32]

Liên quan